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I. INTRODUCTION 

In this paper we present theoretical results for computational procedures developed to 

estimate damping in distributed parameter models of flexible structures. These efforts 

are part of continuing investigations of damping models for composite material structures 

that have been the focus of our attention for the past several years. Our interest in 

these models grew out of questions related to control and stabilization of such structures. 

To solve problems related to design, control and stabilization of large flexible structures, 

one requires a) an accurate niatlieniaticsl model of the dynamics of the structure, and 

b) a method or algorithm for estimating the parameters in the model. Most structures, 

including the simplest of beams, exhibit some type of damping behavior, and it is important 

for the development of accurate models to  account for the damping mechanism. Various 

models have been proposed for such damping mechanisms (see [CP] and [R]), each grounded 

upon reasonable physical principles and yet leading to very different mathematical models. 

It is important then, in the effort to develop accurate models for flexible structures, to study 

the various damping mechanisms and their implications for estimation, stabilization, and 

control problems. Recently, Banks, Inman et a1 ([BVVIC]) reported on their study of 

Kelvin-Voigt and viscous damping in modeling and parameter estimation for composite 

beams. In related investigations Banks and Ito (see [BIJ) developed a general frameworli 

for parameter estimation (including numerical convergence results) for a large class of 

beam models with damping (including viscous, Kelvin-Voigt, spatial-hysteresis). -4 notable 

exception that cannot be treated using results of these studies is viscoelastic damping of 

Boltzmann type (or “time hysteresis”). Our focus in this note will be on this type of 

damping. We discuss below theoretical and computational results for the estimation of 

parameters in a model (described in section 11) of a beam with tip body and Boltzmann 

type damping. We illustrate use of the resulting procedures with data from experiments 

involving a composite material beam with attached tip body. 
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I I I.  M AT 11 EM ATI c A L Fo R M UL AT IO N 

The mathematical model of interest to us is the following system for the transverse 

vibra.tions of a cantilevered Euler-Bernoulli beam with tip body and Boltzmann damping: 

O < x < l ,  t > 0 ,  

(2.2) 

u ( 0 , x )  = u t ( 0 , x )  = 0 ,  0 < x < 1. 

Here u ( t ,  z) is the transverse displacement at time t and position x along the beam. -41.~0, p 

is the linear mass density, E I  is the stiffness, and f ( t ,  s )  represents external applied forces. 

The boundary conditions represent a beam clamped at x = 0 and free at  x = 2, with 

the tip body dynamics governed by (2.2). We assume that the tip body has mass tn and 

moment of inertia J about its center of mass which is assumed to be located at  a distance 

c from the tip of the beam along tlie beam’s axis (see [BR] for a more detailed discussion of 

models for beams with tip bodies). The functions k ( t )  and h ( t )  denote externally applied 

moments (k) and traiisversally applied forces ( I ? )  cxerted on tlie tip body. The delay length 

T (thus the terminology “time hysteresis”) is positive, possibly infinite. In this paper we 

assume that the kernel g ( s )  (the damping kernel) has the form 

a e p s  
g ( s )  = - 

( - s > p  
- r 5 s < 0, 

where a, are positive constants, and p is fixed and satisfies 0 _< p < 1. 

(EI ,a ,P ,p .m,  J )  E Q c RG denote the parameters of interest, where the 

admissible parameter set Q is a compact subset of R6. (The theory can be modified to 

include spatially varying E I ,  but this is not our focus here; see [BR], [BC]). It should 

Let q = 
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be noted that we fix values for T and p rather than treat them as parameters. It is also 

interesting to treat T and p as parameters, but this requires the introduction of more 

complicated parameter-dependent state spaces (see [BBC] for an example of the use of 

such state-spaces). We have carried out numerical studies in this direction but will defer 

any discussion on this aspect of these models to a subsequent paper. 

Here we show (similar in spirit to the approaches in [BR], [BGRW]) how to reformulate 

(2.1) - (3.2) as an abstract Cauchy problem, and in this framework we pose the problem 

of estimating g as a least-squares fit to data. Having done this, we will i n  the next section 

discuss the construction of an approximation framework with which the estimation proldem 

can be solved on a computer. 

To proceed, let H denote the Hilbert space R2 x Ho(O, E )  with inner product 

where throughout we denote the standard H j ( 0 ,  E)  inner product by ( a ,  e ) .  , and A is the 

2 x 2 positive definite matrix 

A _ ’ [ m  p mc J + m c 2  mc 1 .  
Define the Hilbert space V = { ( q , ( , $ )  E H : E H2(0,E), $(O) = 0 = $’(O), 7 = 

d(E), ( = $‘(E)}. Denoting elements of V by = ($(E) ,d’ (E) ,$) ,  = ( $ ( l ) ,  $‘(E), $), 

we take as the V inner product .(a, = (4, $), . It is clear that V is continuously 

and densely imbedded in H, and if we identify H with its dual H* we have the pivot 

spa.ce framework V C H = H* C V*.  Next, define the bilinear form u on V x V by 

.(a), e )  = (d”,  
It is clear that the form 0 is 17-bounded and coercive. That is, there are constants 

K > 0, c1 > 0, so that for a, Ik E 17 we have 

(3.3) 

(2.4) 
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Now in the usual fashion (see [Kr], [Sh]) we can define an operator A E L(V,  V*) by 

for all a, QJ E V. 

I Next define the space 
I 

147 = L2(-r, 0; v; go) ,  

with norm determined by the inner product 

Hcre, go(s) = aOePo8/(--s)P, where oo, P o  are fixed values allowed for q in the admissible 

parameter set Q. As a notational convenience, for q = ( E I ,  a ,  P,  p, m, J )  E Q, we mean by 

g ( q ) ( s )  the function g ( q ) ( s )  = oePs/(-s)P. We point out that by virtue of the definition 

a.nd the compactness of &, the spaces L2(-r, 0; V ;  g ( q ) )  are equivalent for all q E Q. Define 

the operator D : domD c 747 + 74' on the domain 

domD = {I? E HI(+-, 0; V ;  go) : r(0) = 01 

by DI' = clr/ds.  Next define the state space 2 = V x H x 14'- with norm 

Also, define the parameter dependent state operator A(q) on the domain 

(2.G) 
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1 
1 Finally, if we define a state vector ~ ( t )  by 
I 

where U ( t )  = ( ~ ( t ,  1 ) )  t iZ( t ,  l ) ,  ~ ( t ,  e ) ) ,  then (2.1) - (2.2) can be reformula.ted a.s the following 

equivalent abstract Cauchy problem on 2: 

I i ( t )  = d ( q ) Z ( t )  + F ( t ) ,  ~ ( 0 )  = ZO (2.7) 

poscdness result‘ for (2.7)) we nial;e the following assumption 0 x 1  tlie a.dmissible parameters. 

A l )  There exists E > 0 such that 

This is a physically reasonable assumption (see [Wa]), basically guaranteeing that the 

structure is a solid. We shall have occasion to consider the space Z,, which is the Hilbert 

space consisting of the elements of Z equipped with the inner product 

for q = (EI ,cr ,p ,p ,m,J)  E Q. Since Q is compact, one can readily see t1ia.t these inner 

products are equivalent on 2 for all q E Q. Next we collect some results concerning the 

operators d(q) and D which we ha,ve defined. 

Theorem 2.1. 

i) Under assumption AI), the‘opera.tor d(q) is dissipa.tive in 2, for each q E Q. Further, 

d(q) generates a Co-semigroup T(q)( t )  on 2 which satisfies IT(q)(t)lz 5 M e w f ,  where the 

constants M ,  w a.re independent of q E Q. 
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ii) The opera.tor D is dissipative on W ,  and the resolvent ( X I  - 0)-' exists for X > 0. 

Tliese results follow by extending the arguments found in [FI]. We can thus conclude that 

the system (2.7) is well-posed. 

We may now formulate the estimation problem of interest as follows: Find q E Q that 

mi n i mi zes 

The values vi are observations of the tip velocity of the beam (obtaincd, say, via a laser 

vilxometer) at time ti, and v ( q ) ( t i ,  1 )  is the fourth component of the state vector z ( q ) ( t )  

(i.e., the first component of & U ( t ) ) ,  where z ( q ) ( t )  is the mild solution of (3.7) given by 

Z ( Q ) ( t )  = T(q) ( t ) zo  + T(q)( t  - s )F(s )ds .  (2.9) l 
That this inverse problem is well-posed will follow from the compactness of Q if we show 

that J is continuous in q.  But in view of (2.9), under reasonable assumptions on the initial 

data 20 and the forcing term F ( t ) ,  this follows if we show that T(@)( t ) z  * T ( q ) ( t ) z  for 

arbitrary 4' + q and z E 2. The following theorem provides the desired results. 

Theorem 2.2. If t t q ,  then T(q')( t )z  - T(q)( t ) z  for all z E 2,  uniformly in bounded 

t-intervals. 

Proof Since the generators d(q) are dissipative on Z,, the result follows from the well 

known Trotter-Kat0 theorem (see [Pa]) once we show continuity in q of the resolvents 

Rx (d(q)). To this end, let 

and 

z = z ( q )  = (:) = Rx (d(q))s 

z' = Z ( t )  = ( E )  = Rx (d(6))s 

(2.10) 

(2.11) 
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where 

x =  ( i )  € 2 .  

We must show that, for some X > w, z' + z as q" --+ q. Fix X > niax{w,O}. From (2.10) 

we have 

A @ - * = <  

xr - - m = c. 
Substituting the first and third equations into the second, we have 

X2@ + 1 (E1 - lr g(4 ) (s )eA3ds )  A @  
P 

r O  

Similarly, from (2.1 1) we have 

(2.12) 

(2.13) 

Define the bilinear form ux on V x V by 

0 Since X > 0, it is clear that ux is V-coercive [this follows from A l )  since - J-, g(q) (s )ds  5 
- ~ - , g ( q ) ( s ) e x S d s ] .  That is, there exists c > 0 and 0 so that 

Next note that it follows from the form of g ( q ) ( s )  that for /I E H'(-r,O),  

(2.16) 
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as 6 -+ q. From this it follows that 

where dx(q,  4) + 0 as (I -+ q. 

Now, since Q - \1! = A(@ - &), and I' - = (1 - ex')(@ - a)), we will be finished with the 

proof if we show that I @  - &I,, + 0 as @ -+ q. To do this, we make use of the above-defined 

coercive form ox .  From (2.15) and (2.12) - (2.13), we have 

Cancelling a term 

which the result follows. 

- +I,, from ea.ch side of the inequality, we obtain an estimate from 

Let us make a few remarks about the proof. Many proofs of convergence of a sequence 

of semigroups involve the application of some version of tlie Trotter-Iiato theorem. This 

typically involves showing convergence either of the generators of the semigroups or of their 

resolvents, depending upon the version of the Trotter-Kat0 theorem which is used. For pa- 

rameter estimation problems such as we are considering here, the "resolvent convergence" 

form of tlie Trotter-Kat0 theorem is preferable a.s it leads to convergence arguments similar 

in spirit to those of the lhriational approach" of finite element theory (;.e., the definition 

and use of the form ax). .41so, for problems involving spatially varying parameters, this 



version allows one to  impose weaker smoothness requirements on the parameters in order 

to prove convergence results (for a more detailed discussion, see [B], [BI]). 

These remarks will be relevant later in the paper when, after constructing an approxi- 

mation scheme for our estimation problem, we again apply the Trotter-Kat0 theorem to 

argue convergence of a sequence of approximating semigroups. 

111. APPROXIMATION FRAMEWORI< 

Constructing a finite dimensional approximation scheme for the parameter estimation 

problem ( 2 3 )  - (3.9) involves approximating the state operator d(q) and the state space 

2. (Were Q also infinite dimensional, which is often the case for estimation problems, 

we would also need finite dimensional spaces Qii to approximate Q. Treatment of this 

case is possible but we will not pursue it here.) We observe that approximating d(q) and 

Z involves two stages - approximation in the spatial variable, and approximation in the 

delay variable. We will see that the two approximation stages are independent, so that 

our task in constructing a scheme for (2.S) - (2.9) reduces to  choosing a reasonable spatial 

approximation (such as finite elements) and a reasonable delay approximation scheme 

(there are several in the literature (see [BB], [BK], [IK])). That is, there is no conditional 

relationship between the spatial and delay variable approximations. For definiteness, we 

use the index AT for the spatial variable, and A4 for the delay variable. 

Let us consider first the approximation in the spatial variable. This amounts to choosing 

a sequence of finite dimensional spaces H” satisfying H” c V c H which approximate the 

spaces V and H (see .42) below). Once the H” are given, the rest of the approximation in 

the spatial variable follows naturally. That is, the form u defines operators AN : H N  -+ H N  

by 
(d4N@, = u(@, \k) for all a, \zI E H N .  

.41so, define spa.ces TV’” C M I  by lYh’ = Lz(- r ,O;HN;gO)  and Z N  C Z by 

Z N  = Hhr x H N  x 147”. Let P: : H -t H N ,  Pc : 17 + H N ,  and P,*: : 147 -i 147” 

denote the respective orthogonal projections, and define the operator DN on the domain 
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Finally, define the state operator dN(q) on the domain 

I domAN(q) = { (i) E Z N  : I’ E domDN 

We note that each d”(q) generates a Co-semigroup on Z N  (this involves a slight modifi- 

cation of tlie proof that A( q )  generates a Co-semigroup). 

Next, we consider approximation in the delay variable. That is, we apply one of several 

schcmes in the literature for delay equations to the operators d”(q) and spaces 2” .  This 

amounts to defining ( for each AT) finite dimensional subspaces IVh‘xbf C 147”’ and operators 

DN!*’ : I , T i N v M  -+ lVNsnf. However, we are interested in imposing conditions on the delay 

variable approximation which are independent of the spatial approximation (hence inde- 

pendent of AT). In order to  do this, we will consider the generic space IT7 = L2( - T ,  0; R; go) ,  

where R = R’, and the generic operator D defined on the domain 

domD = { w E H1 ( - T ,  0; R; go) : w( 0) = 0} 

by 
dw DW = -. ds 

-4 delay approximation scheme consists of finite dimensional subspaces lj7*f c TTT and 

operators Dnf : IjTAf + 177’’ satisfying certain conditions (see -43) and -44) below) which 

are independent of -Ar. However, although 137’’ and DAf  are independent of n7, for each Ai 

they define in a natural way subspaces TIJN*Af c lVN and operators Dj’”.”‘ : l V N * A f  -+ 147N*nf. 

That is, suppose 

10 



where er are given basis functions for I T r M .  Then define lVNvM by 

(3.2) 

Ci a.iBr : ai E R , where the Br are basis functions for H N ,  then m y  element 

r of Tl/’h‘,hf can be written as 

Hence we define D”’,”‘ by 

In a similar manner, the orthogonal projection n” : 177 -+ la/’”’ defines naturally the 

orthogonal projection l l N v M  : TVN -+ T V N v M .  This completes the approximation of the 

delay variable. 

Ha.ving the approximation of the spatial variable (the spaces H”) and the delay variable 

(the spa.ces lqrM and operators Dh4) ,  we define the finite dimensional state space ZNa*’ by 

and sta.te operator d””(q) on ZNvnf by 

Finally, we state the finite dimensional estimation problem of interest: Find q E Q that 

minimizes 

1 

where uN,*‘ ( q ) ( t ,  I )  is the fourth component of the state vector z”’*’(q)(t) given by 
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on zo and F ( t )  if one first argues that T N ~ ” ‘ ( q N ~ ” f ) ( t ) P , ” ’ M z  + T ( q ) ( t ) z  for arbitrary 

qh’*”f -+ q in Q and z E 2. We give the arguments for this latter convergence in the next 

sect ion. 

IV. CONVERGENCE ANALYSIS 

Reiiiark 4.1 Recall tha.t to argue V-coerciveness of the form OA, we used the fact that 

g(s )exsds  5 so, g(s)ds.  The function ex’ may be characterized by 0 s-r - 

,As = &) - X ( X I -  D)-If(s), 

where j ( s )  
given by 

1. The delay approximation scheme defines a natural approsima.tion of ex’ 

E - X ( X I  - p)--1pf. 
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In order to argue I/-coerciveness of a form a? which we define below, we need en;1(s) to 

satisfy an inequality analogous to that given above: 

for all sufficiently large A4 

Before proving the main semigroup convergence result of this section, we state the fol- 

lowing lemma. 

Leiiiina 4.1. Assume that A3) and A4) hold, and that W”*”‘ and DN.”‘ are given by 

(3.2) and (3.3). Then DNsM is dissipative on TV”*M (uniformly in N ,  A I )  and 

as h4 -+ 00 for each AT and each E TVN. 

The proof is straightforward. We now prove the semigroup convergence result referred to 

above. 

Theorein 4.2. -4ssume that A l )  - A4) and (4.1) hold. 

T”sM (qN*”)P,”*nf z + T(q)(t)z for all z E 2, uniformly in bounded t-intervals. 

If q”” -+ q in Q, then 

Proof First, the dissipativeness of DNshf implies that the dNVAf ( q )  are dissipative on 

Z,, uniformly in AT and Ad. Thus, we can apply the “resolvent convergence” form of the 

Trotter-Kat0 theorem, as in the proof of Theorem 2.2. Let 

= (i) = Rx(A(q))x (4.3) 

and 

where 
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Solving (4.3) and (4.4) for a, aN we find 

X 2 @  + 1 P ( E l  - lr g ( q ) ( s ) e A 9 d s )  A@ 

and 

-4s in the proof of Theorem 2.2, it is sufficient to argue that I@” - Q,ll, -+ 0 as qh’*M -+ q. 

To this end, define a bilinear form or on V x V by 

From the technical condition (4.1) it follows that or is V-coercive, uniformly in A4 and q ,  

for some X > 0. That is, there exists C > 0 so that 

for all q E Q. Also, it is easy to see that for all a, Q E V, 

where lC(A4‘)  ---f 0 a.s AI + m. Now, let 6” E H N  satisfy 16”! - @I,, + 0 as Ar -+ 00 

(existence of a & N  ~ O ~ ~ O W S  from -43)). Thus it is sufficient to argue that lah’ - & h ’ l  V t 0. 

Letting Sh’ = @” - 6”, we have 
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The proof is completed by applying A?) to ( u ) ,  (4.2) to ( b ) ,  (2.lG) to ( c ) ,  (2.17) to ( d ) ,  

(4.9) to (e), and the uniform 1’-boundedness of a? to (f). 

V. COMPUTATIONAL RESULTS 

In this section we describe some of our computational results for the Boltzmann damping 

model under consideration. Recall that for the approximation scheme which we have 

described, the underlying spatial and delay discretizations should satisfy assumptions -42) 

- A4) and (4.1). For most of the numerical experiments which we have run, we have based 

our approximations on cubic splines for the spatial variable and a version of the so-called 

averaging scheme for the delay variable. 

More specifically, for a beam of length 1 and a given positive integer AT, consider the 

partition of the spatial interval [ O , I ]  given by A N  = {x,},=~, N where X, = 2 . 1, Let 

S 3 ( A N )  denote the set of cubic splines with knots A N ,  and { b ~ } ~ ’ L + L ,  the standard cubic 

B-spline basis set for S 3 ( ( a N )  (see [PI-]). Next, we can in the usual way define a new 

set of functions {br}z; so that the fixed end (z = 0) boundary conditions are satisfied. 

That is, define bf.’ = 26E1 - 6; + 26;, and b r  = 6; for i = 2 , 3 , .  . . , N + 1. Then define 

B,N = ( b r ( l ) ,  & b r ( l ) , b r ) ,  and set H N  = span ( B r , . .  . ,B:+l}. For this choice of H N ,  

assumption A2) is satisfied. 

N 
.. 
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For the delay variable, we use the “non-uniform mesh” version of the averaging scheme 

(see [FI]). That is, for a delay length r ,  positive integer Ad and kernel function g(s), set 

C = so --f g(s)ds. Then the partition 

P 
iJ 

is defined uniquely by the condition Ji,-’ g(s)ds = $. For the kernel functions g ( s )  under 

consideration, which are increasing and have a singularity a.t s = 0, this results in a finer 

mesh near s = 0. Nest, let xj”’ denote the characteristic function on the interval [t j” ’, tj”’-,]. 

Define the space is 

defined by 

= span { x r , .  . . ,xi:}. Finally, the opera.tor D*’ : lTTnf + 

where a0 G 0. It can be shown (see [FI]) that l?rnf and gnr satisfy A3)-A4) and that (4 .1)  

is satisfied. 

We ha.ve conducted a number of numerical tests using simulated da.ta in which we ob- 

served the convergence and efficiency of the scheme for identifying the parameters E I ,  a, 

,b, p, nz and J .  However, here we present an application using experimental data in  order 

to demonstrate that the Boltzmann damping model can provide a very good prediction of 

vibration response in certain flexible structures. In particular, we use da.ta from a series of 

experiments carried out at  the Mechanical Systems Laboratory at SUNY at Buffalo. (We 

gratefully acknowledge Dr. D.J. Inman, H. Cudney, and Z. Liang for their collaboration 

on these experiments.) In these experiments, a cantilevered composite beam with tip body 

n~as escited from an initial rest configuration via an impulse from a force ha.mmer. .4 laser 

vibrometer was used to collect measurements of the tip velocity of the beam in response 

to the force. These measurements were used as observations in our least-squares criterion 

J (recall (2.8)). 

For the particular esperiment presented here, we used a composite beam of length 

I = 1.96s ft., width 0.3345 ft., and thickness 0.01968 ft., with a tip body (a cylinder 

of radius 0.08036 ft. and height 0.27224 ft.) with mass rn = 0.075714 slug and moment of 

inertia J given by J = c f m  with c j  = 0.0SS2G5 ft. The beam density was p = 0.021441 
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slug/ft. We observed the tip velocity of the beam after it was hit with an impulse hammer 

at z p  = 0.984 ft. The shape, height and duration of the input were modelled using 

the input signal from a transducer in the hammer. We recorded 2048 time observations 

at At = 0.001953 seconds intervals, thus giving time domain data over the period [0.4] 

seconds. 

The actual structure (a composite material beam with a cylindrical body attached near 

the free end) used in our experiments entailed the “tip” body being attached with its 

center of mass at 1.9352 ft. from the clamped end of tlie beam of 1.9G8 ft. in length. So 

in fact we did not have a “tip body” as described in the model above. To compensate for 

this inaccuracy in the model, we tool; c = 0 but allowed cJ and nz (;.e., J and m )  along 

with E I ,  a ,  and p to be estimated by our algorithm. We would expect to (and did) obtain 

“effective” values of cJ and m that are slight perturbations of the measured values given 

above. 

We then used data from the experiment (1018 observations in the time period [0.01172,2] 

- we did not use any observations from the time period for the hammer hit) with the 

procedure we have described in order to estimate the stiffness parameter E I ,  the damping 

parameters Q and ,B, and c j  and rn. In these computations we chose p = 0.5 and T = 

0.01. f t2,  Q = 4S.4G9, p = 654.109, Cj = 

0.091026 ft., and m = 0.070044 slug. A value of E1 was also determined, using standard 

modal techniques, to be 107.103 lb f t2 .  Thus our value is well within the 10% range 

which is generally thought to be the accuracy of the modal techniques. The estimated 

values for c j  and rn are also within 10% of the measured values. We point out that an 

heuristic physical interpretation of the large value of p is that the material has a “memory” 

which fades very rapidly. This type of short “memory” makes sense for materials which 

are “more elastic than  viscous^' as our experimental beam appeared to be. In fact, for 

the case of no “memory” at all (i.e. g ( s )  = 0),  our model reduces to that of a purely 

elastic Euler-Bernoulli beam. Thus the presence of a small delay (the memory) in the 

mathematical model drastically changes the qualitative behavior of the model (from elastic 

to  viscoelastic). (That small delays can affect behavior of a model has been observed 

elsewhere; see [DLP] ). 

We obtained the values E I  = 103.S92 lb 

17 



We depict in Figures 1, la, and 2 the time domain response and FFT for our beam 

model and experiment. In these figures, the solid line graphs represent the experimental 

data while the dashed lines represent the model response corresponding to our estimated 

parameter values. It is clear that we have obtained a very good fit to data. with this model. 

Other similar experiments and computational studies ([BWIC], [BF\YIC]) illustra.te the 

usefulness of the techniques described in this paper in studying damping in distrilmted 

parameter models for structures. 
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